Herbal oral care products in reducing dental plaque and gingivitis: an overview of systematic reviews

Vini Mehta¹, Ankita Mathur¹, Snehasish Tripathy¹, Rizwan SA², Tanvi Sharma³

¹Department of Dental Research Cell, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018, India.
²Scientist-D, ICMR-National Institute of Epidemiology, Chennai, India
³University of Michigan, Ann Arbor 48109, USA.

Corresponding author: Dr. Vini Mehta Department of Dental Research Cell Dr. D. Y. Patil Dental College and Hospital Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune 411018 INDIA

Email: vini.mehta@statsense.in

ABSTRACT

Introduction: Herbal and conventional oral care approaches have been investigated for the reduction of plaque and gingivitis in numerous clinical trials and systematic reviews.

However, the findings reported across these vary and are inconsistent. Thus, the objective of this umbrella review is to compile data from systematic reviews and provide an overview of the effects of herbal oral care products on tooth plaque and gingivitis.

Methods: A comprehensive search of the literature was performed from inception to May 30, 2023, in six databases for systematic reviews with or without meta-analyses without any language restrictions. We considered only the clinical trials comparing herbal oral care products (in form of mouth rinse or toothpaste) against standard oral care products or placebo.

Results: Few herbal oral care products particularly in form of herbal mouthrinse have a similar level of positive effect on plaque and gingivitis reduction and thus, can be used as an adjunct to traditional dentifrices. However, the shorter duration of trials (<4 weeks) and reported publication bias in the clinical trials signals towards interpreting this information with caution.

Conclusion: To accurately determine the impact of various herbal extracts on periodontal health, subsequent well-designed, long-term, and controlled trials which adhere to standardised protocols must be carried out.

Keywords: dental plaque; gingivitis; oral health; herbal CDHA Research Agenda category: risk assessment and management

BACKGROUND

Oral health is of prime importance since it has a direct impact on an individual's entire wellbeing. However, oral health conditions as a consequence of poor oral hygiene remains an overlooked global health concern, affecting 3.5 billion people worldwide.¹ Dental plaque and Gingivitis are the most common oral health conditions that, if left untreated, can progress to tooth loss² and other systemic disorders such as cardiovascular diseases, rheumatoid arthritis, dementia, and stroke.³ Recently a role of epigenetic processes involving microRNAs and NTproBNP in periodontitis was observed that could influence host response against natural agents.⁴⁻⁶ Thus, effective management and control of the dental plaque is an effective strategy for overall well-being and quality of life. Self-care efforts or mechanical management of dental plaque with typical oral care products such as toothpaste and mouthwash have been demonstrated success in maintaining oral hygiene and prevention of plaque formation; nevertheless, these alone will not prevent gingivitis.

Another approach that might help with eliminating and preventing microbial buildup of plaque is Chemical treatment of plaque.⁷ Chemical agents such as chlorhexidine (CHX), essential oils, 0.454% stannous fluoride/sodium hexametaphosphate sodium monofluorophosphate, and cetyl pyridinium chloride have been shown to have the highest effect on gingivitis reduction.^{8,9} However, following continuous usage, these chemical mouthwashes particularly alcohol-based, such as chlorhexidine, cetylpyridinium chloride can cause tooth and tongue discoloration, taste disruption, and harmful effects on the oral mucosa.^{8,10,11} As a result, the hunt for alternatives persists, and the focus has switched to organic or herbal agents.

In recent years, herbal dental care products have gained popularity as a result of their perceived efficacy and effectiveness as well as possible natural and holistic advantages to oral hygiene2. It is predicated on the notion that certain plant extracts contain anti-inflammatory, anti-bacterial, and oxidative properties that may fight against the bacteria causing dental plaque while decreasing inflammation in the gums.^{10,12} Thus, a number of oral care product producers and large corporations have added a variety of herbal ingredients to their products, claiming that they mimic the advantages of removal of plaque, breath freshening, and gum disease prevention.¹³ These products frequently contain a blend of botanical extracts, essential oils, and other natural components with therapeutic characteristics. The most frequent herbal components mixed into oral care products are

Akarkara (anacyclus pyrethrum), Babool (acacia *arabica*), Haldi (*curcuma longa*), sanguinarine, propolis, *Azadirachta indica* (neem), charcoal, *Camellia sinensis* (Green tea), clove, and miswak.¹¹⁻¹³

Herbal and conventional oral care approaches have been investigated for the reduction of plaque and gingivitis in numerous clinical trials and systematic reviews. However, the findings reported across these vary and are inconsistent.^{7,10,13-15} As numerous systematic reviews (SRs) and meta-analyses (MA) are available, an umbrella review can detect evidence uncertainty and provide a high-level summary of data, resulting in a balanced and evidence-based evaluation of the effectiveness of herbal oral care products in reducing tooth plaque and gingivitis.

Objective of the study

The objective of this umbrella review is to compile data from systematic reviews to provide an overview of the effects of herbal oral care products on tooth plaque and gingivitis. This review summarizes and synthesizes the findings from published systematic reviews and/or meta-analyses to answer the following question:

"In systemically healthy individuals (P), do herbal oral care products (I) compared to conventional over-the-counter (OTC) products (C) exhibit greater efficacy in reducing dental plaque and gingivitis (O)?"

METHODS

Review registration

This overview of SRs was conducted in accordance with Cochrane Handbook for Systematic Reviews of Interventions¹⁶, and the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 statement was used to conduct this review¹⁷ as the Preferred Reporting Items for Overviews of Reviews (PRIOR) is not fully developed.¹⁸ An a priori protocol for this study was registered with the International Prospective Register of Systematic Reviews (PROSPERO) (Registration Number CRD42022357899 dated 14th October 2022).

This overview of systematic reviews addresses the following research question: "Does herbal oral care products (toothpaste or mouthwash) have efficacy in reducing dental plaque and

gingivitis in comparison to commercial over the counter (OTC) products in adults?", focusing on:

P-Population: Participants of any age group (free from any systemic illnesses)

I-Intervention: Herbal oral care products (either toothpaste or mouth rinse)

C-Comparison: Over the counter (OTC) non-herbal oral care products (Fluoride toothpaste, non-fluoride/ non-herbal toothpaste, Chlorhexidine mouth rinse or non-herbal Mouth rinse). Outcomes: Reduction in dental plaque levels or gingival inflammation.

Data source and search strategy

From inception to May 30, 2023, the following online databases have been sought to retriev systematic reviews irrespective of meta-analyses: Scopus, PubMed, Embase, Allied and Complementary Medicine Database, Complementary and Alternative Medicine (CAM), and Cochrane Register of Controlled Trials. Two independent reviewers (V.M. and A.M.) searched the repositories using Medical Subject Headings (MeSH) terms and text words, without no language restrictions. Boolean operators were used for combining the following search terms:

- 1. "herbal" OR "herb*"
- "Hygiene, Oral" OR "Dental Hygiene" OR "Hygiene, Dental" OR "Dentifrice" OR "Mouth Rinse" OR "Mouth Rinses" OR "Rinse, Mouth" OR "Rinses, Mouth" OR "Mouth Bath" OR "Bath, Mouth" OR "Mouth Baths" OR "Mouth Wash" OR "Wash, Mouth"
- "Indices, Dental Plaque" OR "Dental Plaque Indexes" OR "Dental Plaque Indices" OR "Index, Dental Plaque"
- "Gingival Index" OR "Gingival Indices" OR "Index, Gingival" OR "Indices, Gingival" OR "Gingival Indexes" OR "Indexes, Gingival"
- 5. Systematic Review OR Meta-analysis.

Inclusion and exclusion criteria

The retrieved citations were evaluated and duplicates were removed from the database. Two reviewers (V.M and A.M.) separately examined the titles and abstracts of all the systematic reviews with or without meta-analyses papers discovered via the electronic search. The full texts were then studied and examined for additional inclusion/exclusion criteria. Studies that did not match the inclusion criteria were omitted (Table 1). Any disagreements were settled through conversation among reviewers and consulting a third subject expert. Additionally, the included studies were carefully searched to identify further potentially relevant systematic

reviews with or without meta-analyses. In the case of inadequate or missing information, contact was made with the authors.

Study selection and data extraction

The citations found during the search and full-text publications from possibly relevant SRs were evaluated independently by two reviewers. Using a standardized form, one reviewer extracted the information in question. Any discrepancies were resolved with a third reviewer after a second reviewer independently assessed the retrieved data. The following information was sought out: author along with the year of publication, participants, intervention, comparator, outcome, quality assessment technique, meta-analysis, sample size, SR quality, and findings.

Methodological quality assessment

We utilised the Joanna Briggs Institute (JBI) critical assessment checklist for systematic reviews¹⁹ to assess the methodological quality of the SRs with or without meta-analysis. There are 11 items on the checklist, and each one is worth 1 point. Consequently, a review's overall quality score might range from 0 to 11. The publications in this comprehensive evaluation that had scores of 0-4, 5-7, and 8-11 were classified as low-, medium-, and high-quality research, respectively based on independent evaluation by two authors (S.T. and A.M.). Discussion and agreement were employed to settle any disputes.

Data synthesis and analysis

The characteristics and methodological integrity of the included SRs were compiled in a table and presented narratively. Moreover, a narrative summary of the results of the natural product intervention was also provided.

RESULTS

Literature search

371 citations were found through electronic searches across all sources, 48 of them were deleted for being duplicates, and remaining 323 titles and abstracts were located and screened for eligibility (See Figure 1). Only 28 of these were identified to be potentially eligible for full text screening. After reading 28 full text articles, 16 studies^{7,10,13-15,20-30} finally met the inclusion criteria.

Study characteristics

Of these 16 studies, seven were systematic reviews and nine were systematic reviews and meta-analyses. Table 2 lists all the PICO characteristics of the included studies. Moreover, table 3, 4, and 5 provides details of demographic characteristics, qualitative and quantitative synthesis of the included studies, respectively. The included studies have been published between 2014 and 2023. The included reviews drew their conclusions from primary research ranging from 2 to 47 RCTs. The average number of databases referenced by the included papers was 3.63 ± 2.00 with PubMed, Cochrane clinical trial registry and Embase being the most common.

Participants in eight reviews were healthy people^{7,13,14,20,24,25,27,29} while those in seven studies^{10,15,21-23,28,30} had plaque or clinically confirmed gingivitis or biofilm related periodontal conditions in the absence of any other systemic illnesses. Only one study included individuals having fixed orthodontic therapy (OT).²⁶ The total number of participants involved in the included research ranged from 120 to over 3600. Only one study did not disclose the number of participants.⁷ The length of the follow-up period in the research ranged greatly, from the shortest duration of 1 hour to the greatest duration of 63 weeks. Manipal et al. (2016) didn't report the duration of follow up in included studies.²⁷

Summary of intervention

Of the 16 included studies, eleven^{7,10,13-15,20,23,24,26-28} have looked into the use of herbal toothpastes or mouthwashes as interventions. In terms of the herbal constituents present in the toothpastes under study, the included papers have revealed significant variability. However, some commonly reported herbal ingredients include chamomile (Matricaria recutita), Neem (Azadirachta indica), Aloe vera (Aloe barbadensis), salvoadoral persica, chitosan, Sanguinaria canadensis L. extracts, Rosmarinus officinalis, Triphala, Cymbopogan citrates (lemon grass), Terminalia chebula, green tea (Camellia sinensis), Zingiber officinale, Curcuma, AND Miswak.^{7,10,13-15,20,24,26-28}

Five studies, on the other hand, looked into using a single herbal ingredient as an intervention.^{21,22,25,29,30} Triphala was mentioned as an adjuvant by Aljameel et al.³⁰ Terby et al. reported using curcumin as an intervention in a variety of ways (gel, subgingival irrigants, chips, or mouthwash).²⁹ Dhingra et al. reported aloe vera-based herbal dentifrices with aloe

vera as an active component.²¹ *Azadirachta indica* (neem) mouth rinses have been studied by Dhingra et al.²² *Salvoadora persica* mouthwash was also mentioned as an intervention by Jassoma et al.²⁵

Summary of findings

Systematic reviews

The main findings of the systematic reviews varied due to variations in the intervention investigated. Participants in half of the studies were healthy people, while those in the other half had plaque or clinically confirmed gingivitis or biofilm related periodontal conditions in the absence of any other systemic illnesses. Dhingra et al. (2014) showed that in patients with gingivitis, aloe vera herbal dental dentifrices are just as effective—if not more so—than a placebo or traditional dentifrices at reducing plaque and gingival irritation.²¹ However, reliable inferences cannot be drawn due to the data's intrinsic poor quality and significant bias likelihood. Another comprehensive analysis of the effectiveness of neem mouth rinse discovered no notable difference in the reduction of plaque and gingival inflammation in gingivitis patients when administered as an alternative to toothbrushing over the course of four weeks.²² Similarly, Chen et al.²⁰ and Ingle et al.²⁴ also found that there were no appreciable differences in plaque or gingival inflammation between the test and control groups, proving that the efficacy of herbal formulations is comparable to that of the best available formulations.

Contrary to this, Suresh et al.⁷ reported green tea, miswak, *Carica* papaya leaf extract, *S. baicalensis* toothpastes as effective in plaque, gingivitis and gingival bleeding. Similarly, Santi et al.²⁸ found the use of certain mouthrinses containing herbs such as *Camellia sinensis, Anacardium occidentale Linn, Azadirachta indica, Curcuma longa, and Schinus terebinthifolius* reduced dental plaque and gingival irritation more effectively than Chlorhexidine. Furthermore, in another study, *Camellia sinensis* was found to have the greatest positive results in lowering both plaque and gingival index and *Azadirachta indica* extracts shown effectiveness similar to CHX.²³ Ricinus communis oil decreased microbiological counts and GI but failed to surpass the hypochlorite solution, which was used as a replacement therapy for dentures. Melaleuca alternifolia oil, on the other hand, demonstrated a low reduction in plaque index (PI) but no effect on gingival index (GI) scores. Overall, herbal products demonstrated positive effects in reducing plaque and gingival inflammation, although the specific efficacy varied depending on the herb used.

However, due to non-adherence to established scientific protocols for RCTs exist (e.g., CONSORT) and shorter time of trial evaluation, all of these systematic reviews revealed uncertainty in their results. As a result of the evaluations, future clinical trials should follow rigorous methodological approaches including blinding, parallel study design and appropriate sample sizes to enable accurate evaluation of treatment differences in order to achieve more consistent results across investigations.

Systematic reviews and meta-analysis

Majority SRMAs reported the similar efficacy of herbal and conventional dentifrices in reducing plaque and gingival inflammation.^{10,13-15,27,30} Jankairam et al. compared the fluoridated and non-fluoridated dentifrice with herbal dentifrice and reported that herbal toothpaste is just as effective as conventional toothpaste [standardized mean difference (SMD) 4.64, 95% confidence interval (CI):2.23, 7.05] at removing plaque, but less effective than fluoride toothpaste (SMD 0.99, 95% CI 0.14 to 2.13) at 4 weeks and chlorhexidine mouthwashes (SMD -2.61, 95% CI (4.42 to 0.80) after 12 weeks.¹³ Cai et al. findings also indicated that herbal mouthwashes were similarly effective in reducing plaque and gingivitis, comparable to Chlorhexidine Mouthwashes (CHX-MW).¹⁰ Similarly, study by Aljameel et al²⁷ reported that triphala mouth rinses are similarly effective in improving plaque induced gingivitis as CHX-MW. The overall mean difference for both Gingival Index [weighted mean difference (WMD)= -0.29, 95% CI= -0.40 to -0.17, p<0.001] and Plaque Index (WMD= -0.43, 95% CI= -0.54 to -0.31, p<0.001) were statistically significant between triphala and CHX-MX at follow-up.³⁰

However, few reported conventional dentifrices or Chlorhexidine mouthwashes being superior in efficacy than herbal dentifrices. For instance, Mehta et al., in their meta-analysis found that conventional dentifrice had a significantly higher efficacy for plaque index (SMD: 7.34; 95% CI: 4.05–10.64) whereas there was similar effect of herbal and conventional dentifrice on gingival inflammation (SMD: 1.48; 95% CI: -0.59-3.55, P = 0.16; test for heterogeneity: P<0. 00001, I2 = 96%).¹⁴ Another meta-analysis results of *Salvadora persica* showed significant inhibitory plaque formation effect (P < 0.00001, MD: 0.46, and 95% CI: 0.29 to 0.63), antistreptococcal (P< 0.0001, MD: -1.42, and 95% CI: -2.08 to – 0.76) and anti-lactobacilli effects (P<0.00001, MD: -1.12, and 95% CI: -1.45 to – 0.79). However, its effectiveness was found to be inferior than chlorhexidine formulations.²⁵ Kommuri et al., revealed that approximately 40% of studies found that the chlorhexidine is superior to those of herbal-based mouthwashes.²⁶ Findings of Janakiram et al., study also resonated that conventional mouth rinse were found significantly better than herbal mouth rinse for either short-term [SMD -0.15, 95% CI (0.32 to 0.01)] or long-term effects [SMD-0.09, 95% CI (0.25 to 0.08) impacts on gingival inflammation.¹³

One SRMA reported positive effect of herbal product curcumin in dental treatment.²⁹ The effectiveness of curcumin in various forms for the treatment of periodontitis was evaluated and the findings showed that over the long term, there was a statistically significant decrease in probing pocket depth when compared to the control group [SMD 0.87, 95% CI:1.31 to 0.43]. The short- and long-term plaque scores or gingival inflammation were better treated by curcumin topical gel (SMD 0.87, 95% CI:1.31 to 0.43) than by curcumin mouthwash (SMD 0.76, 95% CI: 2.25 to 0.73).

All studies, however, acknowledged that their results were equivocal because of heterogeneity in several parameters, variations in individual elements, and the chemical composition of the components in mouthwashes used in the control and intervention groups.

Adverse effects

Studies on herbal compounds have documented a range of adverse consequences. reviewers^{10,14,20,23,28} discovered that both herbal and conventional dentifrices cause side effects such as mouth ulceration, a burning sensation, tissue sensitivity, dryness, tooth discoloration, hypogeusia, lightheadedness, and an unpleasant taste. Contrarily, camellia sinensis (green tea) mouthwash had no adverse effects.²⁸ According to Ingle et al., Herbal dentifrice caused hypersensitivity in one individual, but no other side effects or gingival desquamation were seen.²⁴ Other studies, did not found any negative events connected to the interventions.^{7,13,15,21,22,26,27,29,30}

Quality assessment findings

Based on scoring system, it was determined that the methodological quality of one study²⁴ was low, four studies^{7,21,23,27} had medium quality and remaining eleven had high quality.^{10,13-} ^{15,20,22,25,26,28-30} According to the PICO structure, all research had explicitly and clearly stated their review statement. The majority of studies obtained score for appropriate inclusion criteria, assessment criteria, independently conducted critical appraisal, appropriate data synthesis, and defined research directions. Except for one study²⁷, the remaining studies reported performing risk of bias assessment with majority using the Cochrane risk of bias assessment method to evaluate studies. Only seven of the sixteen research mentioned the possibility of publication bias.^{10,14,15,20,25,26,30} Six research did not explicitly mentioned the procedures applied for reducing errors in data extraction.^{7,20,21,24,26,27} Besides that, barely half of the studies made policy and practice recommendations based on their research findings.^{13-15,22,25,26,27,29,30} (Table 6)

Fi-index tool: This manuscript has been checked with the Fi-index tool and obtained a score of 0.44 for the first author only on the date 20/02/2023 according to SCOPUS[®].^{31,32} The fi-index tool aims to ensure the quality of the reference list and limit any autocitations.

DISCUSSION

The present umbrella review has collated the available systematic reviews with and without meta-analysis of randomized controlled trials. Our results show that few herbal dental care products, particularly in the form of mouth rinse such as *curcumin, green tea, miswak, Carica papaya leaf extract S. baicalensis, Camellia sinensis, Azadirachta indica, Curcuma longa, Anacardium occidentale Linn, and Schinus terebinthifolius* have a similar level of positive effect on plaque and gingivitis reduction and thus, can be used as an adjunct to traditional dentifrices. However, the shorter duration of trials (<4 weeks) and reported publication bias in the clinical trials signals towards interpreting this information with caution and calls for further long-term clinical trials in this area.

Periodontal disease is the world's second most prevalent oral health problem, affecting approximately 1 billion people.¹ Despite tremendous advances in clinical oral health care technologies and interventions in recent years, there remain major concerns about its availability, accessibility, and affordability. Addressing these factors is crucial to reducing health disparities because they directly influence proper dental health care as well as appropriate health behaviors.³³ When dental health is compromised, eating patterns are significantly impacted, which may have a consequently lead to metabolic disorders such as diabetes mellitus where nutrition plays a significant role. An affordable approach is therefore extremely needed.³⁴

CHX is widely considered as the cost effective and benchmark standard in periodontal antiseptic treatment. However, because of its negative effects and the rise in antibiotic resistance, people are seeking alternatives that are organic.³⁵ Herbs contain unique

physicochemical and therapeutic properties. Secondary metabolites, found in herbs, are effective in treating infections and other medical conditions. Identifying and characterizing these metabolites, as well as their independent and collaborative modes of action, is a significant challenge for contemporary pharmacology. Although numerous studies^{7,10,13-15,20-30} have demonstrated the efficacy of some herbal plants in plaque and gingivitis, it is critical to comprehend the interactions of plant compounds (metabolites) with the human system as well as other medications. Based on that, appropriate guidelines for herbal products usage must be created, which may subsequently require modification depending on unique biological profiles. Furthermore, there is a risk of improper utilization or adulteration; thus, despite their therapeutic potential, precaution must be given when promoting for herbal treatments. It is critical to maximize the therapeutic effect of herbal medicine by paying close attention to both plant origin and quality control.³⁶

Weakness and strength of umbrella review

The current umbrella review has several positive aspects, such as we explored six major electronic research databases using a comprehensive and rigorous search method in order to discover potentially suitable publications. Secondly, no language constraints were imposed on the inclusion of studies. Thirdly, two authors worked independently on the screening of search results, data extraction, and quality appraisal. Lastly, we settled differences at each stage by involving a third reviewer who was experts in topic area.

However, it comes with some inherent limitation. These include not exploring grey literatures which could have resulted in the loss of potentially relevant literature. Second, while our investigation included both systematic reviews and meta-analyses, there was variability the composition, concentrations, and therapeutic properties of herbal ingredients utilized in the included studies. As a result, we were unable to pool and analyse the data in order to reach a conclusive decision.

Reporting gaps in the clinical studies and included systematic reviews

While reviewing the included studies, several methodological limitations of clinical trials as well systematic reviews were identified. Therefore, we recommend following suggestions to enhance the standard of subsequent research on herbal oral care products.

Recommendations For clinical trials Choosing a sample size that produces a certain level of statistical power has been an established method to conducting trials. Ingle et al.²⁴ in their systematic review reported of studies not following proper sample size. Conducting trials with either too small or too large samples are referred to as "underpowered" or "overpowered" trials, respectively, as they cannot capture true effect and are thus, frequently criticised as being scientifically pointless and unethical from a medical standpoint.³⁷ This implies that before beginning a trial, a thorough sample size calculation based on earlier studies must be made. Besides, all studies reported that included RCTs were carried out for a brief period (<6 months), therefore there is currently no information available regarding the potential negative effects of any herbal formulation when used over an extended period of time. Therefore, it is advised to conduct RCTs (randomised controlled trials) with established protocols, and defined population parameters with a bigger sample size and over a longer period of time. For instance, the minimum length of the research intervention should be taken into account so that a reduction in gingival inflammation may be shown. American Dental Association (ADA) specifies the long term studies to have ≥ 6 months duration for a seal of acceptance, with an intermediate evaluation at 3 months to determine the efficacy and safety of chemical agents and patient compliance.³⁸

In addition, numerous studies have found that herbal formulations work well as dentifrices. Further rigorous and high-quality research involving trials at different concentrations and compositions is recommended, though, to improve the documentation of findings.¹⁵ Additionally, three systematic reviews and meta-analyses have indicated uncertain risk of bias and methodological issues in included RCTs, which prevents drawing reliable inferences.^{14,26,28} Therefore, additional clinical trials with a clear risk of bias assessment and following Consolidated Standards of Reporting Trials (CONSORT) guidelines is required to offer trustworthy and conclusive results.

For systematic reviews and meta-analysis

To avoid bias in study outcomes, SRs should seek to synthesise all relevant material, regardless of language of publication.³⁹

The tool used for appraising included studies must be reported and its outcomes must be taken into account for drawing conclusions and making recommendations.

Two or more authors must independently appraise quality of included studies and extract data to reduce bias and improve accuracy of information.

To bridge the gap between research evidence and clinical decision making, all SRs and SRMAs must give policy and practise implications, supporting evidence-based clinical practise and guiding future research endeavours.

CONCLUSION

The present umbrella review highlights the fact that some herbal extracts produce results comparable to those of traditional dental care products. Consequently, herbal care products can be utilised as an alternative to treat plaque and gingivitis. Nevertheless, inferences cannot be drawn from the existing studies, because of their poor methodological quality, short duration of trials, and significant potential for bias. Therefore, clinicians should use caution when incorporating herbal products for the treatment of plaque and gingivitis, weighing the potential benefits and unanticipated events. Furthermore, to accurately determine the impact of various herbal extracts on periodontal health, subsequent well-designed, long-term, and controlled trials which adhere to standardised protocols must be carried out.

CLINICAL RELEVANCE

Scientific rationale for the study

Herbal oral care products have attracted a lot of attention from manufacturers, consumers, and researchers. However, there is insufficient degree of scientific evidence showing their efficacy.

Principal findings

Some herbal oral care products show similar effectiveness at preventing plaque and gingivitis as conventional products. But the research done so far has been biased, of lower quality, and done for shorter time period.

Practical implications

Within its boundaries, this umbrella review concluded that several herbal products are beneficial in treating plaque and gingivitis; nevertheless, these must be taken with precaution and furthermore, methodologically sound, long-term RCTs are needed to validate their effectiveness.

Additional Information

Conflict of Interest: None

Funding Source: The author(s) received no financial support for the research, authorship, and/or publication of this article.

Data availability statement: Data sharing is not applicable to this article as no new data were created or analyzed in this study.

REFERENCES

- Global oral health status report: towards universal health coverage for oral health by 2030. World health Organization. Published 2022. Accessed July 2, 2023. https://www.who.int/publications-detail-redirect/9789240061484
- Chatzopoulos GS, Karakostas P, Kavakloglou S, Assimopoulou A, Barmpalexis P, Tsalikis L. Clinical Effectiveness of Herbal Oral Care Products in Periodontitis Patients: A Systematic Review. *Int J Environ Res Public Health*. 2022;19(16):10061. doi:10.3390/ijerph191610061
- Fagundes NCF, Almeida APCPSC, Vilhena KFB, Magno MB, Maia LC, Lima RR. Periodontitis As A Risk Factor For Stroke: A Systematic Review And Meta-Analysis. *Vasc Health Risk Manag.* 2019;15:519-532. doi:10.2147/VHRM.S204097
- Isola G, Santonocito S, Distefano A, Polizzi A, Vaccaro M, Raciti G, Alibrandi A, Li Volti G. Impact of periodontitis on gingival crevicular fluid miRNAs profiles associated with cardiovascular disease risk. J Periodontal Res. 2023 Feb;58(1):165-174. doi: 10.1111/jre.13078. Epub 2022 Dec 8. PMID: 36482859.
- Isola G, Tartaglia GM, Santonocito S, Polizzi A, Williams RC, Iorio-Siciliano V. Impact of N-terminal pro-B-type natriuretic peptide and related inflammatory biomarkers on periodontal treatment outcomes in patients with periodontitis: An explorative human randomized-controlled clinical trial. J Periodontol. 2023 Dec;94(12):1414-1424. doi: 10.1002/JPER.23-0063. Epub 2023 Jul 11. PMID: 37433155.
- Lucchese A, Matarese G, Manuelli M, Ciuffreda C, Bassani L, Isola G, Cordasco G, Gherlone E. Reliability and efficacy of palifermin in prevention and management of oral mucositis in patients with acute lymphoblastic leukemia: a randomized, doubleblind controlled clinical trial. Minerva Stomatol. 2016 Feb;65(1):43-50. PMID: 26862696.
- Suresh S, Arumugham IM, Doraikannan S, Rathinavelu PK, Prabakar J, Balasubramaniam A. Comparing the Effectiveness of Herbal and Conventional Dentifrices in Reducing Dental Plaque and Gingivitis: A Systematic Review. *J Int Soc Prev Community Dent*. 2021;11(6):601-608. doi:10.4103/jispcd.JISPCD_171_21

- Figuero E, Herrera D, Tobías A, et al. Efficacy of adjunctive anti-plaque chemical agents in managing gingivitis: A systematic review and network meta-analyses. *J Clin Periodontol.* 2019;46(7):723-739. doi:10.1111/jcpe.13127
- Mankodi S, Bartizek RD, Leslie Winston J, Biesbrock AR, McClanahan SF, He T. Anti-gingivitis efficacy of a stabilized 0.454% stannous fluoride/sodium hexametaphosphate dentifrice. *J Clin Periodontol.* 2005;32(1):75-80. doi:10.1111/j.1600-051X.2004.00639.x
- 10. Cai H, Chen J, Panagodage Perera NK, Liang X. Effects of Herbal Mouthwashes on Plaque and Inflammation Control for Patients with Gingivitis: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. *Evid Based Complement Alternat Med.* 2020;2020:e2829854. doi:10.1155/2020/2829854
- 11. Singh K, Singh P, Oberoi G. Comparative studies between herbal toothpaste (dantkanti) and non-herbal tooth paste. 2016;4:53-56. doi:10.14419/ijdr.v4i2.6633
- Patra JK, Kim ES, Oh K, et al. Bactericidal Effect of Extracts and Metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis Causing Dental Plaque and Periodontal Inflammatory Diseases. *Molecules*. 2015;20(4):6128-6139. doi:10.3390/molecules20046128
- Janakiram C, Venkitachalam R, Fontelo P, Iafolla TJ, Dye BA. Effectiveness of herbal oral care products in reducing dental plaque & gingivitis - a systematic review and meta-analysis. *BMC Complement Med Ther*. 2020;20(1):43. doi:10.1186/s12906-020-2812-1
- 14. Mehta V, Shetiya SH, Kakodkar P, Janakiram C, Rizwan SA. Efficacy of herbal dentifrice on the prevention of plaque and gingivitis as compared to conventional dentifrice: A systematic review and meta-analysis. *J Indian Soc Periodontol*. 2018;22(5):379-389. doi:10.4103/jisp.jisp_100_18
- 15. Javed D, Dixit AK, Anwar S, Rai A. Systematic Review and Meta-Analysis of Randomized Controlled Trials of Ayurvedic and Herbal Dentifrices for Plaque Reduction in Gingivitis. In Review; 2022. doi:10.21203/rs.3.rs-1405356/v1

- Higgins JP, Eldridge S, Li T. Including variants on randomized trials. In: *Cochrane Handbook for Systematic Reviews of Interventions*. John Wiley & Sons, Ltd; 2019:569-593. doi:10.1002/9781119536604.ch23
- Page MJ, Higgins JP, Sterne JA. Assessing risk of bias due to missing results in a synthesis. In: *Cochrane Handbook for Systematic Reviews of Interventions*. John Wiley & Sons, Ltd; 2019:349-374. doi:10.1002/9781119536604.ch13
- Hunt H, Pollock A, Campbell P, Estcourt L, Brunton G. An introduction to overviews of reviews: planning a relevant research question and objective for an overview. *Syst Rev.* 2018;7(1):39. doi:10.1186/s13643-018-0695-8
- Martin J. © Joanna Briggs Institute 2017 Critical Appraisal Checklist for Systematic Reviews and Research Syntheses. Published online 2017.
- 20. Chen Y, Wong RWK, McGrath C, Hagg U, Seneviratne CJ. Natural compounds containing mouthrinses in the management of dental plaque and gingivitis: a systematic review. *Clin Oral Investig.* 2014;18(1):1-16. doi:10.1007/s00784-013-1033-0
- Dhingra K. Aloe vera herbal dentifrices for plaque and gingivitis control: a systematic review. Oral Dis. 2014;20(3):254-267. doi:10.1111/odi.12113
- 22. Dhingra K, Vandana KL. Effectiveness of Azadirachta indica (neem) mouthrinse in plaque and gingivitis control: a systematic review. *Int J Dent Hyg.* 2017;15(1):4-15. doi:10.1111/idh.12191
- 23. Furquim Dos Santos Cardoso V, Amaral Roppa RH, Antunes C, Silva Moraes AN, Santi L, Konrath EL. Efficacy of medicinal plant extracts as dental and periodontal antibiofilm agents: A systematic review of randomized clinical trials. J Ethnopharmacol. 2021;281:114541. doi:10.1016/j.jep.2021.114541
- 24. Anand Ingle N. The Role of Herbs in Influencing Periodontal Health A Systematic Review. Int J Dent Oral Sci. Published online September 5, 2021:4326-4330. doi:10.19070/2377-8075-21000880
- 25. Jassoma E, Baeesa L, Sabbagh H. The antiplaque/anticariogenic efficacy of Salvadora persica (Miswak) mouthrinse in comparison to that of chlorhexidine: a systematic

review and meta-analysis. *BMC Oral Health*. 2019;19(1):64. doi:10.1186/s12903-019-0741-5

- 26. Kommuri K, Michelogiannakis D, Barmak BA, Rossouw PE, Javed F. Efficacy of herbal- versus chlorhexidine-based mouthwashes towards oral hygiene maintenance in patients undergoing fixed orthodontic therapy: A systematic review and meta-analysis. *Int J Dent Hyg.* 2022;20(1):100-111. doi:10.1111/idh.12567
- Manipal S, Hussain S, Wadgave U, Duraiswamy P, Ravi K. The Mouthwash War -Chlorhexidine vs. Herbal Mouth Rinses: A Meta-Analysis. J Clin Diagn Res JCDR. 2016;10(5):ZC81-ZC83. doi:10.7860/JCDR/2016/16578.7815
- 28. Santi SS, Casarin M, Grellmann AP, Chambrone L, Zanatta FB. Effect of herbal mouthrinses on dental plaque formation and gingival inflammation: A systematic review. Oral Dis. 2021;27(2):127-141. doi:10.1111/odi.13254
- Terby S, Shereef M, Ramanarayanan V, Balakrishnan B. The effect of curcumin as an adjunct in the treatment of chronic periodontitis: A systematic review and meta-analysis. *Saudi Dent J.* 2021;33(7):375-385. doi:10.1016/j.sdentj.2021.07.008
- 30. AlJameel AH, Almalki SA. Effect of triphala mouthrinse on plaque and gingival inflammation: A systematic review and meta-analysis of randomized controlled trials. *Int J Dent Hyg.* 2020;18(4):344-351. doi:10.1111/idh.12444
- 28. Fi-Index: A New Method to Evaluate Authors Hirsch-Index Reliability. Publishing Research Quarterly 2022, 10.1007/s12109-022-09892-3, doi:10.1007/s12109-022-09892-3.
- 32. 29. The Use of Fi-Index Tool to Assess Per-manuscript Self-citations. Publishing Research Quarterly 2022, 10.1007/s12109-022-09920-2, doi:10.1007/s12109-022-09920-2.
- 33. Botelho J, Mascarenhas P, Viana J, et al. An umbrella review of the evidence linking oral health and systemic noncommunicable diseases. *Nat Commun.* 2022;13(1):7614. doi:10.1038/s41467-022-35337-8

- 34. Gondivkar SM, Gadbail AR, Gondivkar RS, et al. Nutrition and oral health. *Dis Mon*. 2019;65(6):147-154. doi:10.1016/j.disamonth.2018.09.009
- 35. Mathur A, Gopalakrishnan D, Mehta V, Rizwan SA, Shetiya SH, Bagwe S. Efficacy of green tea-based mouthwashes on dental plaque and gingival inflammation: a systematic review and meta-analysis. Indian Journal of Dental Research. 2018 Mar 1;29(2):225-32.
- 36. Budala DG, Martu MA, Maftei GA, Diaconu-Popa DA, Danila V, Luchian I. The Role of Natural Compounds in Optimizing Contemporary Dental Treatment—Current Status and Future Trends. *J Funct Biomater*. 2023;14(5):273. doi:10.3390/jfb14050273
- Manski CF, Tetenov A. Sufficient trial size to inform clinical practice. *Proc Natl Acad Sci.* 2016;113(38):10518-10523. doi:10.1073/pnas.1612174113
- 38. Acceptance Program Guidelines. Chemotherapeutic Products for Control of Gingivitis. American Dental Association [Internet]. 2008 July [cited 2023 October 5]. Available from: https://www.ada.org/en/resources/research/science-and-researchinstitute/ada-seal-of-acceptance
- Walpole SC. Including papers in languages other than English in systematic reviews: important, feasible, yet often omitted. J Clin Epidemiol. 2019;111:127-134. doi:10.1016/j.jclinepi.2019.03.004

 Table 1: Eligibility criteria concerning sources, design and characteristics of the studies included regarding population, intervention, comparison and outcome(s).

Systematic	reviews		
Eligibility		Inclusion Criteria	Non-Inclusion Criteria
Sources			
Databases		Electronic and Manual	None
Language		No restrictions	None
Publication status		Published	None
Publication date		From inception till 30th May 2023	No restrictions
			Prospective, retrospective,
			case-control, pre-clinical in
			vivo, in vitro studies, as well
			as conference
		Systematic Reviews exclusively including	communications, books and
		Randomized Clinical Trials (RCTs) with or	chapters papers, oral
Design		without a meta-analysis.	presentation.
		7	

Characteristics of the studies included in the eligible systematic reviews

		Participants with systemic
RCTs Population	Healthy participants	disorders
Study sample size	No restrictions	No restrictions
Age	No restrictions	No restrictions
Gender	No restrictions	No restrictions
Intervention		
Route of administration	Either brushed or rinsed	Application of toothpowder
		Ayurvedic or proprietary
	Herbal oral care products (either toothpaste	medicine formulation
	or mouth rinse) which had an active herbal	without manufactures
	ingredient, or a natural or plant extract as	instructions or absence of
Type of products	claimed by the manufacturer.	active ingredient
	Active controls using formulation	
	containing non-herbal active ingredients in	
	toothpaste and mouth rinse that were	Combination of herbal and
	commercially available OTC or	non-herbal oral care
Comparison	manufactured as placebos for the study.	products
		Periodontitis, Bleeding on
Outcome(s)	Reduction in Dental plaque and gingivitis	probing

OTC: Over the counter

Table 2: PICO of included studies

S.No.	Study ID	Participants	Intervention	Comparison	Outcome
1	AlJameel_	Humans	Triphala mouth wash	chlorhexidine	Primary; gingival index
	2020 ²⁹	clinically			(GI) and/or secondary; plaque index (PI)
		diagnosed with			hundre maan (r.)
		plaque-			
		induced			
		gingivitis			
2	Cai_20201	Systematically	Application of herbal	placebo and	The clinical effects of
	0	healthy	mouthwashes from botanical	chlorhexidine	mouthwashes as a supplement to daily oral
		participants	sources		hygiene (i.e.,
		with gingivitis			toothbrushing) on
					inflammation control
3	Chen_	Adults with	NCCM used either alone (as a	Placebo or	plaque index (PI) and/or
	2014 ¹⁹	good general	monotherapy) or as an adjunct	conventional	gingival index (GI)
		health	to another therapeutic agent	mouthwash	
4	Dhingra_	Patients with	Aloe vera herbal dentifrices	placebo/ conventional	Effectiveness of aloe
	2014 ²⁰	gingivitis		dentifrices.	vera containing herbal
					dentifrices in improving
					plaque control and
					gingival health.
5	Dhingra_	Gingivitis	Neem mouth rinses	chlorhexidine	Effectiveness of
	2017 ²¹	patients			(neem)-based herbal
					mouthrinse in
					improving plaque control and gingival
					health
			21 1 1 1	~1.1.1.1.1	
6	Furquim	Presenting	Plant-derived extracts	Chlorhexidine,	changes in plaque indexes (PI), gingival
	Dos	dental plaque,	(tinctures, essential oils,	antibiotics, other	bleeding index (GBI),
	Santos	gingivitis,	hydroalcoholic extracts)	similar substances, or	gingival index (GI), volume modified
	Cardoso_2	and/or	incorporated in appropriated	placebo	gingival index (MGI),
	02122	periodontal-	pharmaceutical formulations		bleeding on probing
		associated	(gels, toothpastes, chewing		bleeding index (PBI),
		biofilm	gums, tablets, powders,		plaque accumulation (PLA) periodontal
		disorders,	mouthwashes, etc.)		probing depth (PD),
		without any			clinical attachment level
		physiological			(CAL), microbial colonization, gingival
					crevicular fluid (GCF)
					parameters

		restrictions			
		were included			
7	Ingle_	Healthy adults	Herbal formulation	Conventional	plaque index (PI) and/or
	2021 ²³			Mouthwashes or	gingival index (GI)
				СНХ	
8	Janakiram	Healthy adults	Herbal Toothpastes or Mouth	Over the counter	Mean reduction in the
	_202012		rinses (chamomile (Matricaria	(OTC) non-herbal	Silness and Loe Plaque
			recutita), neem (Azadirachta	oral care products	index or modified
			indica), Aloe vera (Aloe	(Fluoride toothpaste,	Quigley Hein plaque index; 2. Mean
			barbadensis) and calendula	non-fluoride/non-	reduction of the gingival
			(Calendula officinalis),	herbal toothpaste,	inflammation by Loe and Silness Gingival
			salvoadoral persica, chitosan,	Chlorhexidine mouth	index; 3. Short-term
			ajamoda satva (Apium	rinse or non-herbal	effects (studies with 4- week follow-up
			graveolens), lippia sidiodes	Mouth rinse)	acceptability range ± 3
			(Pepper-rosmarin) and		days) 4. Long-term effects (studies with 12-
			vaikrantha bhasma (Dolichos		weeks follow-up
			biflorus		acceptability range ± 3 days)
					5 /
9	Jassoma_2	Healthy	Salvadora persica mouthwash	Chlorhexidine	a decrease in the mean
	019 ²⁴	individuals			plaque score and cariogenic bacterial
					counts
10	Jawad	Dationta	hahal an arumradia	nagativa nlagaha	Diagua Inday, aingivial
10	2022 ¹⁴	diagnosed as	toothnaste toothnowder gel	acentral having	index
	_2022	astablished	mouth rings in form with or	control naving	
		cincipation and	without machanical use of the	other anticentic	
		gingivitis and	taathhmah flaga ata	other antiseptic	
		basing a s	tootnorusn, noss etc .	compound, and	
		naving no		conventional	
		other dental or		rings not containing	
		disease		any herbal or	
		uisease		botanical	
				component as a	
				constituent	
11	Kommuri	Patients	Herbal based mouth washes	Chlorhexidine based	The comparison
	2022 ²⁵	undergoing		mouthwashes	between efficacy of
	_	fixed OT			chlorhexidine towards
					OHM in patients
					remains debatable.

12	Manipal	Healthy	Herbal Mouth rinse	Chlorhexidine	Effect of two broad
	2016 ²⁶	human			categories of mouth
	_	1			washes namely
		subjects			chlorhexidine and
12	Male	TT 141	II-shal dantifician	Commentional	nerbal mouth wasnes
15	Menta-	Healthy adults	Herbal dentifices	Conventional	ginginglinder (CI)
	201813			dentifrices	gingival index (OI)
14	Santı_	Systemically	Mouth rinse with herbal	Conventional	dental plaque and/or
	202127	healthy adults,	products (Camelia sinensis,	Mouthwashes	gingival inflammation reductions as measured
		>=18 years	Azadirachta indica,		by plaque score and
		old, with a	Anacardium occidentale Linn,		potential side/adverse
		diagnosis of	Schinus terebinthifolius and		effects
		gingivitis	Curcuma longa)	C	
15	Suresh_	Healthy adults	Herbal toothpastes	chlorhexidine or	plaque index (PI) and/or
	20217			fluoride toothpaste	gingival index (GI)
16	Terby_20	Adults > 18	Curcumin topical gels (CTG),	Chlorhexidine (CHX)	Reduction in gingival
	21 ²⁸	years	local delivery gels (CLDG),	mouth rinse, CHX	inflammation, plaque scores and periodontal
			chips (CC), mouth rinses	chips, CHX gel,	pocket depth
			(CMR) and subgin gival	saline, ornidazole gel,	
			irrigation (CSGI)	metronidazole gel	

Abbreviations: CHX- Chlorhexidine; PI- Plague Index; GI: gingival Index; NCCM: Natural component containing Mouthwashes

Study ID	No. of	Total	Country	Sources	Duration	Follow
	trials	sample				Up period
		size (n)	×			
AlJameel_	7	1270	India, Saudi Arabia	MEDLINE/ PubMed,	up to April	2 to 63
202029				EMBASE and Cochrane	2020	weeks
2020				Central Register of Controlled		
		~		Trials (CENTRAL)		
Cai_20201	11	959	Chinese, African,	PubMed,EMBASE, Cochrane	From	10 days to
0			Tibetan, Mongolian,	Database of Systematic	inception to	24 weeks
			· · · · · · · · · · · · · · · · · · ·	Reviews (CDSR), and	22 February	
			Japanese, Indian,	Cochrane Central Register of	2019	
			Korean, Arabic,	Controlled Trials (CENTRAL) databases		
			Unani			
Chen_	11	474	India, Germany,	MEDLINE-PubMed); the	up to feb	4 to 12
201419			Iron	Cochrane Central Register of	2013	weeks
2014			11 dii	Controlled Trials; and		
				EMBASE		
Dhingra_	2	120	Brazil, India	A manual and electronic	up to July	4 weeks to
2014^{20}		120		literature (MEDLINE and	2012	24 weeks
2017				Cochrane Central Register of Controlled Trials)		

Table 3: Demographic characteristics of the included studies

Dhingra K_2017 ²¹	3	129	Brazil, India	PubMed, Cochrane Central Register of Controlled Trials and EMBASE and manual searching.	Search up to February 2015	3-4 weeks
Furquim Dos Santos Cardoso _2021 ²²	47	2914	USA, Brazil, Japan, Italy, Australia, India, Germany, Sweden, Thailand, China, Malaysia	MEDLINE database, Scopus, Web of Science	1988 - aug 30, 2020	7 days- 18 months
Ingle _2021 ²³	18	1190	India, Saudi arabia	PubMed- Medline data base, Scopus and Journal of Web	2000-2019	3 days – 30 days
Janakiram _2020 ¹²	24	1597	India, Iran, USA, Jordan, Brazil, Netherlands	MEDLINE Ovid, EMBASE Ovid, WHO clinical trial register, ClinicalTrials.gov and Cochrane Library	Inception to June 2018	4-12 weeks
Jassoma_ 2019 ²⁴	19	1139	Iraq, Iran, India, Saudi Arabia	MEDLINE-PubMed, Cochrane Central Register of Controlled Trials, Wiley Online Library, ScienceDirect, and Google Scholar	published up to December 2018	1 day – 2 months
Javed _2022 ¹⁴	41	2810	India, Brazil, Saudi	PubMed/Medline, CAM- QUEST, and the Cochrane Central Register	upto August 2021	1 hour – 84 days
Kommuri _2022 ²⁴	8	>400	Not mentioned	PubMed, embase, OVID Medline, Scopus and ISI web of science	upto august 2021	3 days- 8 weeks
Manipal _2016 ²⁶	11	445	India	Pub Med Central listed studies	2003 to 2014	Not mentioned
Mehta_ 2018 ¹³	10	459	Brazil, India, Yemen, Iran	MEDLINE, Cochrane Central Register of Controlled Trials, and major journals	up to September 30, 2017	2 weeks – 6 months
Santi _2021 ²⁷	20	1887	USA, India, Brazil, Egypt	(PubMed/MEDLINE), Cochrane—Central Register of Controlled Trials (CENTRAL), EMBASE, Web of Science, Latin American and Caribbean Center on Health Sciences (LILACS/BIREME), Clinical Trials Registry, PROSPERO, The National Dental Trial Registry, US Clinical Trials Registry and grey literature (OpenGrey, CAPES thesis bank and reference lists of the selected studies)	upto April 2018	14 days- 6 month

Suresh	7	NA	Germany, Brazil,	PubMed, Cochrane, LILACS and Google Scholar	till December	21 days- 6 months
_20217			India, Spain, Sri		2020	monuns
			Lanka			
Terby_20 21 ²⁸	27	>3600	India	Pubmed/Medline and Cochrane Library and hand searching was done	Inception to June 2019.	2-4 weeks

Abbreviations: LILACS: Latin American and Caribbean Center on Health Sciences; NA: Not applicable.

Table 4: Qualitative Synthesis

Study ID	Methodology	Quality Appraisal	Heterogeneity	Findings
	quality			
A 11 1 2020 ²⁹	assessment		Q' 'C' (
AlJameel_202029	Consolidated	A total of 4 studies were	Significant	All studies showed that TRP
	Standards of	considered as having	heterogeneity for	administration was
	Reporting	moderate risk of overall	both GI and PI was	significantly effective as
		bias whereas 5 studies had	beth TDD MW and	compared to CHX in the
	statement	an overall high risk of	CUV MW mo	reatment of plaque-induced
		bias. The high risk of bias	CHX-MW groups	gingivius.
		In the included studies		
		was manny due to lack of		
		generation and selective		
		reporting All studies	*	
		reported the completion		
		of the trial and clear		
		explanation of		
		withdrawals		
Cai 2020 ¹⁰	Cochrane	11 studies were of low	Substantial	Significant differences were
2020	Collaboration's	and unclear risk of bias.	heterogeneity was	observed in favour of herbal
	tool	and two studies included a	observed in those	mouthwashes compared with
		high risk of bias. Six	meta-analyses. For	placebos in both plaque- and
		studies had a low risk of	herbal vs CHX it	inflammation-related indices
		bias for random sequence	was unable to detect	No significant difference
		generation, and five	the exact sources of	was found between herbal
		provided clear	heterogeneity	and CHX mouthwashes
		information in terms of	within the review	
		allocation conceal ment. 2	due to the limited	
		studies failed to blind the	number of included	
		participants and	studies	
		personnel, which		
		introduced a high risk of		
01 001419		bias	0 1 11	
Chen_2014 ¹⁵	Center of	Five studies were		The clinical outcome
	Evidence-	considered to be low	abserved in the	and/or singival blooding
	Madiaina and	quality, having Jadad	domographia	and/or gingivitic soores
	the laded scale	The remaining studies	background of the	and/or gingivitis scores
	the Jadad Scale	were of relatively high	participants and in	
		quality having Indad	the interventions	
		scale scores of 3 or more	regimens duration	
		For the "level of	clinical indices and	
		evidence" assessment all	outcomes of the	
		of the selected studies	studies.	
		were ranked in Level 2b		
		because of their small		

		sample size (no study justified their sample size determination) and low level of study design		
Dhingra _2014 ²⁰	Cochrane Collaboration's tool	The overall risk of bias was estimated to be 'high' for both the RCTs as the proportion of information from studies at high risk of bias was sufficient to affect the interpretation of the results.	A marked heterogeneity was evident in study characteristics (populations, interventions, outcomes, design, quality and results), meta-analysis was not performed and synthesis of data was determined from the evidence tables	The clinical effectiveness of aloe vera herbal dentifrices is not sufficiently defined at present and warrants further investigations based on reporting guidelines of herbal CONSORT statement.
Dhingra _2017 ²¹	Cochrane Collaboration's tool	The overall risk of bias was estimated to be 'unclear' across all the RCTs.	A marked heterogeneity, which was evident in study characteristics (study population, intervention regimen and comparison, outcomes, evaluation period, design, quality and results)	Although the included RCTs showed statistically significant results with respect to efficacy of neem- based mouthrinses, the inherent methodological limitations of these studies warrant their conclusions to be interpreted with great caution.
Furquim Dos Santos Cardoso_2021 ²²	Cochrane Collaboration's tools evaluation system	For the trials, 42.5% of the manuscripts had a final score of 3 (n = 20), 31.9% of 4 (n = 15), while 21.3% had a score of 5 (n = 10) and 4.3% a score of 6 (n = 2 trials).	There was a heterogeneity in drug administration forms (mouthwash, toothpaste, gel, chewing gum and powder), patient collection data, standardization of plant extracts, associations among plant extracts and randomization in every trial.	Camellia sinensis was the most commonly used species (8 studies), with positive results in reducing both the PI and GI in the form of mouthwash, toothpaste and gel. The Melaleuca alternifolia oil (5 studies) demonstrated low reduction in PI but important effects on GI scores. Azadirachta indica (4 studies) extracts presented efficacy similar to CHX to improve the periodontal parameters, including PI and GI. Ricinus communis oil (3 studies), despite reducing microbiological counts and GI, did not prove to be better than the hypochlorite solution, used as an alternative treatment for dentures.

Ingle NA_2021 ²³	Cochrane Risk of Bias Tool	Studies were included only if they had low risk of bias which independently reviewed by the author	Not mentioned	There were no significant differences in the outcome parameters evaluated between the test and control group in all studies, proving the efficacy of herbal formulation as similar to that of a gold standard formulation
Janakiram C_2020 ¹²	Cochrane Collaboration's tool	Among all, allocation concealment or selection bias and blinding of the participants had higher proportions of bias across the studies. Three studies showed low risk of bias seven studies had unclear risk and the remainder were high risk	Substantial heterogeneity across the studies	Participants using HTP were more likely to experience a reduction in dental plaque scores during a four-week period compared to those using NHTP. HTP reduce dental plaque over non- fluoride toothpaste. HMR there was substantial evidence of mean reduction of dental plaque by users of NHMR compared to HMR in 6 studies.
Jassoma_2019 ²⁴	CONSORT 2010 checklist	Studies with scores of 9 or less were regarded as being of low quality; 10– 18 were considered to be of moderate quality; and studies with a score of 19 or more were considered as being of high quality. Seven papers were regarded as high quality while the remaining papers were of moderate quality	The heterogeneity observed between studies might have resulted from different methodologies followed, study designs, and small sample sizes in the individual studies. Heterogeneity was overcome by the use of random effects instead of fixed effects analysis	Salvadora persica rinses exhibited strong antiplaque effects.
Javed D_2022 ¹⁴	Cochrane Collaboration	The majority of studies have a low risk of bias, indicating that the analysis' results are trustworthy. Random sequence generation had a low risk of selection bias in 77.2 % of trials, and allocation concealment had low risk in 65.8% of studies. In 65.8% of trials, blinding of participants	the composition of these ayurvedic preparations was heterogeneous	Ayurvedic and herbal dentifrices may help in plaque reduction, gingival inammation, and bacterial growth.

Kommuri_2022 ²⁵	Cochrane ROB	and personnel (performance bias) was determined to be low risk. In 62 % of trials, blinding of outcome assessment (detection bias) was a low risk. In the reviewed studies, incomplete outcome data (attrition bias) was 77.2 %, while selective reporting (reporting bias) was 82.2 % low risk. In these studies, the risk of other bias was only 12.65%. Four studies have low, 2 studies have moderate and 2 studies have high risk	Heterogeneity of I2= 0%-65% was identified between CFU, GI and PI parameters on comparing the parameters before the use of chlorhexidine and herbal mouthwash group	Out of eight RCTs, results from one RCT favoured chlorhexidine and the results from a second RCT favoured herbal mouthwashes. Results from three RCTs showed comparable effects for the respective investigated OHM-related parameters. Chlorhexidine demonstrated higher antimicrobial efficacy against Streptococcus mutans (S. mutans) in two studies, and one RCT found comparable antimicrobial efficacies.
Manipal _2016 ²⁶	NR	NR	Heterogeneity: χ2 = 369.01, 12 =97%; df=10 (p<0.00001)	Out of 11 studies that were analyzed four studies favor the use of chlorhexidine in comparison with only two
				studies that favor the effect of herbal extract. The rest of the five studies remain neutral agreeing to the null hypothesis that there is no difference in the effect of both the mouth washes

Mehta_2018 ¹³	Cochrane Collaboration's tool	Random sequence generation, blinding of participants and personnel, and other bias showed more than 50% low risk of bias. Blinding of outcome assessment and incomplete outcome data showed more 75% low of risk of bias. No bias was seen for selective reporting. Allocation concealment showed 50% unclear risk of bias	Plaque intervention test for heterogeneity: $P < 0.00001$, $I^2 = 96\%$; gingivitis test for heterogeneity: $P < 0.00001$, $I^2 = 94\%$	Subgroup analysis for plaque intervention and gingival inflammation in case of long- term (more than 4 weeks and up to 6 months) and short- term effects (minimum of 4 weeks) of herbal dentifrice showed no difference when compared to conventional dentifrice.
Santi_2021 ²⁷	The criteria were adapted and divided into seven domains	The estimated potential risk of bias was uncertain in the majority of studies. more than 75% of the studies exhibited an uncertain risk with regard to allocation concealment and selective reporting of the outcome. Taken together the high and uncertain risk of bias, around 40%– 50% of studies presented selection, performance and attrition biases	Considerable clinical heterogeneity was found in the interventions. The herbal products used as an intervention involved 17 different types of plants.	Five studies found per cent reductions higher than CHX, favouring the herbal product for the outcome of dental plaque. All studies found significant differences favouring the herbal products when compared to placebos in both outcome, plaque index and gingival inflammation
Suresh _2021 ⁷	Cochrane Risk of Bias Tool	3 has low risk, 3 has medium risk and 1 has high risk	Due to lack of more clinical studies comparing the conventional and herbal dentifrices, the study found heterogeneous outcome variables.	As all the studies were randomized controlled trials, level of evidence was II. Among all studies, green tea dentifrice toothpastes showed significant reduction when compared with conventional dentifrice, and ayurvedic toothpaste and Carica papaya leaf extract were also effective.
Terby_2021 ²⁸	Cochrane Collaboration's tool	It was observed that allocation concealment and blinding of participants had higher proportions of bias across the studies	Clinical heterogeneity was observed with regard to concentrations and forms of curcumin used in the included studies. Few studies had small sample sizes which could probably be the reason for the high statistical heterogeneity	We found that for a long- term evaluation of probing pocket depth in nine studies each with 400 participants, there was a statistically significant difference in the reduction when curcumin topical gel was used as compared with the control.

Abbreviations

NA: Not applicable; NR: Not reported; SMD: Standard mean difference; CI: Confidence interval; PI: Plaque index; GI: Gingival index; MD: Mean difference; TRP: Triphala; CHX: Chlorhexidine; HTP: Herbal toothpaste; HMR: Herbal mouth rinses; NHTP: Non Herbal toothpaste; HMR: Non- Herbal mouth rinses; CHX: Chlorhexidine; BOP: Bleeding on Probing; CFU: Colony forming unit; CPI: Community Periodontal Index; PPD: Probing pocket depth; MW: Mouth wash; RCTs: Randomized controlled trials; ROB: Risk of bias; CONSORT: Consolidated Standards of Reporting Trials; OT: Orthodontic treatment; OHM: Oral hygiene maintenance.

Study ID	Meta- analysis	Statistical analysis	Subgroup analysis	Sensitivity analysis	Significance/ Direction
AlJameel_2020 ²⁹	yes	For analyses, if the test showed substantial heterogeneity (I ² >75%), a random effects model was applied, or else (I ² ≤75%), a fixed effects model would be used. Forest plots were produced describing weighted mean difference (WMD) of outcomes and 95% confidence intervals (CI).	NA	NA	TRP-MW seem to significantly improve the clinical gingival inflammatory parameters in plaque induced gingivitis with equal clinical efficacy as CHX-MW. The overall mean difference for both GI (WMD= -0.29 , 95% CI= -0.40 to -0.17 , p<0.001) and PI (WMD= -0.43 , 95% CI= -0.54 to -0.31 , p<0.001) were statistically significant between TRP-MW and CHX- MW at follow-up, respectively.
Cai_2020 ¹⁰	yes	Considering the sample size of individual studies and the heterogeneity across trials, either a fixed effects model or a random effect model was applied.	NA	NA	Significant differences were observed in all these analyses in favour of herbal mouthwashes rather than placebos. herbal to placebo: QHPI: WMD – 0.61, 95% CI (– 0.80, – 0.42), P < 0.001). gingival inflammation-related indices, herbal mouthwashes had a significantly higher decrease in GI (– 0.28 (– 0.51, – 0.06), P>0.01), MGI (– 0.59 (– 1.08, – 0.11), P 0.02), and GBI (– 0.06 (– 0.09, – 0.04), P < 0.001) compared to placebos. No significant difference was found between herbal and CHX mouthwashes.
Dhingra _2017 ²¹	yes	Difference in mean values of parameters (clinical and/or	NA	NA	The included RCTs showed that there was no statistically significant difference between

Table 5: Quantitative Synthesis

		microbiological/immunological			neem and chlorhexidine mouth
		outcomes) measured at baseline			rinses. However, the short
		and at the end of			study duration (of up to 4
		evaluation period.			weeks), inherent poor quality
					of reporting and unclear risk of
					bias of these RCTs precludes
					the drawing of firm
					conclusions.
Janakiram	yes	Subgroup analyses were	Yes	NA	We found that HTP was
_202012		performed to assess the impact			superior over NHTP (SMD
		of the HTP on duration of			1.95, 95% CI (0.97–2.93)) in
		intervention (4 vs. 12 weeks).			plaque reduction. The long-
		heterogeneity of the data using			term use of NHMR was
		Coentran's Q statistic, a eni-			superior in reduction of dental
		square test, a threshold p-value			plaque over HMR (SMD -2.01, 0.5% (CL 4.42, 0.80)
I_{assoma} 2010 ²⁴	MAG	Odd ratios with a fixed affect	Vac	Vac	7576 (CI 4.42–0.80)
Jassonia_2019	yes	model was used for	1 05	105	Salvadora persica rinses
		homogenous studies whilst a			exhibited strong antiplaque
		random effect model was used			effects (P<0.00001 MD: 0.46
		for the heterogeneous studies.			and 95% CI: 0.29 to 0.63). In
		Forest plots were used to			addition, it had statistically
		display MD and their 95%			significant anti-streptococcal
		confidence in CI of individual		×	(P < 0.0001, MD: -1.42, and
		studies and a summary estimate			95% CI: -2.08 to - 0.76) and
		of effect.			anti-lactobacilli effects (P <
					0.00001, MD: -1.12, and 95%
					CI: -1.45 to -0.79) when
L 1D 202214			27.4	37	compared to placebo.
Javed D_202214	yes	MD and standard deviations	* NA	Yes	Significant differences in these
		$(\pm SD)$. The standardized			analyses in favour of herbal
		(SMD) were calculated for			and ayurvedic dentifices as
		(SIVID) were calculated for			compare to control of placebo.
		different scales or indices) for			
	4	each study. Randome effects			
		models were used to calculate a			
		pooled estimate of effect and its			
		95% confidence intervals (CIs).			
Kommur: 202225	Vac	Maan and standard deviations	NA	ΝA	2 studies show OIM
	yes	(SD) mean differences (MD)	11/1	11/1	properties of chlorhevidine is
1	1	(SD), mean anterences (IVID)		1	Properties of emotioneridine 18

		[GI, HI, BOP, PPD and CPI] and standardized mean differences (SMD) [CFU and PI] were calculated. In addition to 95% confidence intervals (CI), random effect models were used to estimate pooled and non-pooled effect. Sub-group analysis for each OHM-related parameter was performed across studies before and after the use of chlorhexidine and herbal mouthwashes in the control and intervention groups. To identify consistency between studies, heterogeneity was calculated using the I ² statistic; forest plotting was used.			superior, 4 shows both herbal and chlorhexidine were equal. Chlorhexidine and herbal- based mouthwashes seem to be effective towards OHM in patients undergoing fixed OT. However, based on the high risk of bias and methodological variations, the reported outcomes should be interpreted with caution.
Manipal _2016 ²⁶	yes	The fixed effects model was used for analysis when compared to the random effects model as the data was more heterogeneous. Chi square was used to compute heterogeneity based on the standard deviation and confidence levels of all the selected studies. Meta-analysis was performed for 11 studies.	NA	NA	The present situation supports the use of chlorhexidine can be labelled as the 'gold standard'. The widespread usages of herbal products now need to be advocated and prescribed only with substantial documented and scientific studies. Hence more number of clinical and randomized control trials on a larger scale to continue their development and usage.
Mehta_2018 ¹³	yes	Primary outcome variables from each study were combined for continuous data using a random effects model	Yes	NA	MA with a subgroup of herbal dentifrice compared to conventional dentifrice (fluoridated or nonfluoridated) revealed that that efficacy of conventional dentifrice was significantly higher for plaque intervention (SMD: 7.34; 95% CI: 4.05–10.64, P = 0.0001.
Terby_2021 ²⁸	yes	Heterogeneity of the data was evaluated using the Cochran's Q statistic, with the threshold p- value of less than 0.10 and I2 statistic). Forest plots were generated for visual interpretation.	NA	NA	There was a statistically significant difference in the reduction when curcumin topical gel was used as compared with the control [SMD 0.87, 95% CI: 1.31 to 0.43]. However, in the evaluation of short-term plaque and gingival scores, we found no statistically significant differences in the reduction when curcumin mouth rinse was used [SMD 0.76, 95% CI: 2.25 to 0.721]

Abbreviations

NA: not applicable; SMD: Standard mean difference; CI: Confidence interval; PI: Plaque index; GI: Gingival index; WMD: weighted mean difference; NCCM: natural compound containing mouthwashes; TRP: Triphala; CHX: Chlorhexidine; SD: Std. Deviation; BOP: Bleeding on Probing; CFU: Colony forming unit; CPI:

Community Periodontal Index; PPD: Probing pocket depth; MD: Mean differences; MW: Mouth wash; NHMR: Non-herbal mouth rinse; HTP: Herbal toothpaste; HMR: Herbal mouth rinse; NHTP: Non-herbal toothpaste; RCTs: Randomized controlled trials; OT: Orthodontic treatment; OHM: Oral hygiene maintenance

i adie of Critical appraisal of included studie	Tal	ble 6:	Critical	appraisal	of included	studies
---	-----	--------	----------	-----------	-------------	---------

Sr. No.	Study ID	Is the review question clearly and explicitly stated?	Were the inclusion criteria appropria te for the review question?	Was the search strategy appropria te?	Were the sources and resources used to search for studies adequate ?	Were the criteria for appraisin g studies appropria te?	Was critical appraisal conducte d by two or more reviewers independ ently?	Were there methods to minimize errors in data extraction ?	Were the methods used to combine studies appropria te?	Was the likelihood of publicatio n bias assessed?	Were recomme ndations for policy and/or practice supported by the reported data?	Were the specific directives for new research appropria te?	Scores
1	AlJameel_ 2020 ²⁹	Yes	Yes	Unclear	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	9
2	Cai_ 2020 ¹⁰	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	10
3	Chen_ 2014 ¹⁹	Yes	Yes	Yes	Yes	Yes	Unclear	Unclear	Yes	Yes	No	Yes	8
4	Dhingra K_2014 ²⁰	Yes	Yes	Yes	Yes	Yes	Unclear	Unclear	Yes	No	Unclear	Yes	7
5	Dhingra K_2017 ²¹	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	N/A	Yes	Yes	10
6	Furquim Dos Santos	Yes	Yes	Yes	No	Yes	Yes	Yes	Unclear	No	No	Yes	7

	Cardoso												
	V_2021^{22}												
7	Ingle	Yes	Unclear	Unclear	No	Yes	No	Unclear	Yes	N/A	No	Yes	4
	NA_2021 ²										7		
	3												
8	Janakiram	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	10
	C_2020 ¹²												
9	Jassoma_	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	10
	2019 ²⁴								7				
10	Javed	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11
	D_2022 ¹⁴							X					
11	Kommuri	Yes	Yes	Yes	Yes	Yes	Unclear	Unclear	Yes	Yes	Yes	Yes	9
	_ 2022 ²⁵												
12	Manipal	Yes	Yes	Unclear	No	Unclear	Unclear	Unclear	Yes	No	Yes	Yes	5
	_2016 ²⁶						7						
13	Mehta_20	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	11
	1813												
14	Santi SS_	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Unclear	Unclear	8
	202127												
15	Suresh	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Unclear	No	Yes	7
	S_2021 ⁷												
16	Terby_20	Yes	Yes	Unclear	Yes	Yes	Yes	Yes	Yes	No	Yes	No	9
	21 ²⁸												
1		1			1	1	1	1	1	1	1	1	1